
 

 1 April 2001 
 

SIMULATION NEWS EUROPE 
 

T
E

C
H

N
IC

A
L N

O
T

E
S

Issue 31 

TECHNICAL NOTES 
Basic Event Graph Modeling 

Arnold Buss 
Operations Research Department, Naval Postgraduate School 

Monterey, CA 93943-5000 U.S.A.  

Introduction 
This paper is a brief introduction to Event Graph 

methodology. Event Graphs are a way of graphically 
representing discrete-event simulation models. They 
have a minimalist design, with a single type of node and 
two types of edges with up to three options. Despite 
their simplicity, Event Graphs are extremely powerful. 
The Event Graph is the only graphical paradigm that 
directly models the event list logic. There are no 
conceptual limitations to the ability of Event Graphs to 
create a simulation model for any circumstance. Their 
simplicity, together with their extensibility, make them an 
ideal tool for rapid construction and prototyping of 
simulation models. Discrete Event Simulation 

We assume the reader is familiar with the basic 
concepts of discrete event simulation (see any 
introductory text such as Law and Kelton 1991), so we 
will only briefly review the basics. Two fundamental 
components of a discrete event simulation model are a 
set of state variables, and a set of events. The model 
emulates the system being studied by producing state 
trajectories, that is, the time history of successive values 
of the system's state variables. 

 Measures of performance are computed as 
statistics based on these state trajectories. Discrete 
event models are characterized by state trajectories that 
are piecewise constant. Events occur at the points in 
time at which at least one state variable changes value. 
It is important to note that an event is an instantaneous 
occurrence in the discrete event model. No simulated 
time passes when an event occurs; simulated time 
passes only between the occurrence of events.  

The timing of the occurrence of events is controlled 
by the Future Event List (or simply the Event List), which 
is nothing more than a “to-do” list of scheduled events. 
Whenever an event is scheduled to occur, an event 
notice is created and stored on the future events list. 
Every event notice contains two pieces of information: 
(1) what event is being scheduled; and (2) the 
(simulated) time at which the event is to occur. The 
Event List keeps the event notices in order by ranking 
them based on the lowest scheduled time. Events 

occurring simultaneously in simulated time must be 
prioritized according to some secondary rule. The future 
events list is managed by basic discrete event algorithm 
that controls the flow of time in the simulated world of 
the model.  

At each iteration the algorithm examines the event 
list to see if there are any scheduled events. An empty 
list means there is nothing to do, so the simulation 
terminates (i.e. the simulation run ends). If the event list 
is not empty, the simulated clock is updated to the time 
of the first event and the associated event is executed - 
that is, the state transitions associated with that event 
are performed. Note that the terminating condition 
(empty event list) means the simulation must be initiated 
with at least one scheduled event for any event to 
actually occur. We follow Schruben (1995) by identifying 
one distinguished event (Run) that is always on the 
event list initially. The Run event is responsible for 
scheduling the initial events of the model. 

By convention, when an event occurs, all state 
changes associated with that event are first performed. 
Next, all further events are scheduled, and finally the 
event notice is removed from the Event List. The events 
scheduled are specified by the occurring event itself and 
may be conditional on certain values of the current 
state. The order of execution for these three steps could 
be altered and different, but equivalent, models would 
result. Although it is possible to perform the actions in 
arbitrary order (e.g. First change some states, then 
schedule some events, then change some more states, 
etc.), the resulting models would be confusing and error-
prone. There is considerable benefit from adapting a 
convention such as the one above. 

Event Graphs 
Event Graphs are a way of representing the Future 

Event List logic for a discrete-event model. An Event 
Graph consists of nodes and directed edges. Each node 
corresponds to an event, or state transition, and each 
edge corresponds to the scheduling of other events. 
Each edge can optionally have an associated boolean 
condition and/or a time delay. Figure 1 shows the 
fundamental construct for Event Graphs and is 



 

April 2001 2 
 

T
E

C
H

N
IC

A
L 

N
O

T
E

S
 

SIMULATION NEWS EUROPE 
 

Is
su

e 
31

Arrival

{N++}

tA

interpreted as follows: the occurrence of Event A causes 
Event B to be scheduled after a time delay of t, 
providing condition (i) is true (after the state transitions 
for Event A have been performed). By convention, the 
time delay t is indicated toward the tail of the scheduling 
edge and the edge condition is shown just above the 
wavy line through the middle of the edge. If there is no 
time delay, then t is omitted. Similarly, if Event B is 
always scheduled following the occurrence of Event B, 
then the edge condition is omitted, and the edge is 
called an unconditional edge.Thus, the basic Event 
Graph paradigm contains only two elements: the event 
node and the scheduling edge with two options on the 
edges (time delay and edge condition). 

 

 
Figure 1. 

Fundamental Event Graph Construct 
 

The simplicity of the Event Graph paradigm is 
evident from the fact that we can represent any discrete 
event model using only these constructs (Schruben 
1992, 1995; Schruben and Yücesan 1993). An 
advantage of the minimalist approach of Event Graphs 
is that the modeler can spend more time on model 
formulation and less on learning the constructs of the 
paradigm. 

There is a price to the simplicity of Event Graphs, 
however. Since Event Graphs represent the event 
scheduling relationship, rather than the physical 
movement of, say, customers through a queueing 
system, Event Graphs require a higher degree of 
abstraction on the part of the simulation modeler than 
the more commonly used process/resource world view. 
The author’s experience using Event Graphs in an 
introductory simulation course is that the higher 
abstraction of Event Graphs is easy to master and 
provides rich payoffs for understanding and creating 
discrete event simulations. Indeed, the use of Event 
Graphs tends to accelerate the understanding of the 
Discrete Event paradigm. 

Example 
The simplest non-trivial Event Graph is the Arrival 

Process, a model with a single event (Arrival) and a sin-
gle state variable, the cumulative number of arrivals (N). 
The time between arrivals is modeled as a sequence of 
interarrival times {tA} that can be constant, a sequence 
of iid random variables (making the model that of a 

renewal process), or any arbitrary process of non-zero 
numbers. The state transition for the Arrival event is that 
the cumulative number of arrivals (N) be incremented by 
1. The Event Graph for the Arrival Process is show in 
Figure 2. 

 

 
 
 
 
 
 
 
 

 
 

Figure 2. The Arrival Process Event Graph 
 

Since the Event List is initially empty, the terminating 
condition for the simulation run, there must be at least 
one event scheduled initially. Event Graphs provide this 
by means of a bootstrapping event called “Run.” The 
Run event is placed on the Event List at time 0.0 but is 
otherwise an ordinary event with associated state 
transitions and scheduling edges. Thus, to make the 
Arrival Process model in Figure 2 a complete running 
model, a Run event is added that simply initializes the 
cumulative number of arrivals to 0 and scheduled the 
first arrival, as shown in Figure 3. 

Arrival

{N++}

Run

{N = 0}

tAtA

 
Figure 3. Arrival Process with Run Event 

 
Simultaneous Events 

There is one difficulty in the straightforward 
application of the Event Graph methodology presented 
so far to complex models, namely that of resolving the 
execution order of simultaneous events. Simultaneous 
events occur when more than one event is schedule to 
occur the exactly the same time. In some cases the 
order of execution of the events is irrelevant, but in other 
cases certain permutations of the order of occurrence 
impact the outcome dramatically, often leading to invalid 
state trajectories and inadmissible values of state 

A B
t

(i)



 

 3 April 2001 
 

SIMULATION NEWS EUROPE 
 

T
E

C
H

N
IC

A
L N

O
T

E
S

Issue 31 

variables. Since computers have finite precision, this 
possibility cannot be discounted even when “continuous” 
random variables are being used. For the simple model 
in Figure 3 there is no problem with simultaneous 
events, but even in slightly more involved models (such 
as the queueing model discussed in the following 
section) the problem of resolving simultaneous events 
arises. If discrete probability distributions are used to 
model delay times then the potential for simultaneous 
events increases dramatically.  

Event Graph methodology provides the capability of 
prioritizing scheduling edges, so that simultaneous oc-
currences of the scheduled event always occur before 
other scheduled events. Although these edge priorities 
are typically not indicated on the graph itself, all soft-
ware implementations of Event Graph methodology 
support edge prioritization. 

Further Examples 
We will now present some additional examples of 

Event Graph models. The first is a standard multiple-
server queue. 

Multiple Server Queue 
Description.  

Customers arrive to a service facility according to an 
arrival process and are served by one of k servers. Cus-
tomers arriving to find all servers busy wait in a single 
queue and are served in order of their arrival. 

Parameters 
{tA} = interarrival times; {tS} = service times; k = total 

number of servers. 

State Variables 
 Q = # of customers in queue; S = # of available 

servers 

Event Graph 

Arrival

{Q++}

Start
Service

End
Service

tA
t
S(S > 0)

{Q--, S--} {S++}

(Q > 0)

Run

{Q = 0, S = k}

tA

Comments 
In this model, entity-oriented data (such as time in 

queue or time in system) are not explicitly available. The 
idea is that time-varying statistics can be collected on 
each state variable and these are ordinarily sufficient to 
compute any desired performance measure. In this 
case, Little’s formula can be applied to translate time 
averages into tallied statistics for delay in queue or time 
in system.  

This model bears a superficial resemblance to a 
process-oriented model, since the events correspond to 
the sequence of actions that occur as a customer pro-
ceeds through the system. However, close inspection 
shows that the scheduling edge going “backwards” from 
the EndService event to the StartService event do not 
have a direct correspondence in a process model. The 
Event Graph captures the scheduling dependencies of 
the events in the model, not the flow of customers or 
entities through the system. That is, the Event Graph 
does not represent a synchronous flow of event execu-
tion, but scheduling relationship between the various 
events which are executed asynchronously when the 
simulation is run. 

For more flexible models, it is highly desirable to 
separate the arrival process from the server part of the 
model into two distinct components. The two compo-
nents can be loosely-coupled to work together (see 
Buss, 2000). For this introductory note, however, we will 
confine ourselves to simple models with no component 
approach. 

Tandem Queue 
Description 

Arriving customers are processed by one work-
station consisting of a multiple-server queue. Upon 
completion of service at the first workstation, a customer 
proceeds with probability to a second workstation or de-
parts the system with probability 1- p. 

Parameters 
{tA} = interarrival times; {tSi} = service times at work-

station i (i=1,2); ki = total number of servers at work-
station i; p = probability of customer proceeding to sec-
ond workstation; {U} a sequence of iid Un(0,1) random 
variables. 

State Variables 
Qi = # of customers in queue for workstation i; Si = # 

of available servers at workstation i. 



 

April 2001 4 
 

T
E

C
H

N
IC

A
L 

N
O

T
E

S
 

SIMULATION NEWS EUROPE 
 

Is
su

e 
31

A B

(i)

Event Graph: 

 

Comments 
This model can easily  be extended to models with 

any number of workcenters by appending more copies 
of the “Server” portion of the Event Graph. However, as 
the number of workcenters becomes very large, the re-
sulting model becomes unwieldy. Process-oriented 
methodologies have the same difficulty scaling up. More 
scalable Event Graph models can be created in two 
ways: exploiting parameters on edges and events, dis-
cussed below, and the use of a component framework 
for creating “building blocks” consisting of relatively 
small Event Graph pieces Buss (2000). 

Extensions 
In principle the simple construct in Figure 1 is all that 

is needed to create any discrete event simulation mod-
els. In practice, however, there are two simple exten-
sions that enhance event graph models’ ease of use 
and enable much simpler models to be created. These 
extensions are the cancelling edge and the ability to 
pass parameters on edges. 

Cancelling Edges 
The cancelling edge is the inverse operation of the 

scheduling edge, and is represented in Figure 4. 

 

Figure 4. Cancelling Edge 

 

The interpretation of Figure 4 is as follows. When-
ever event A occurs, then if condition (i) is true, the first 
occurrence of event B is removed from the event list. If 
event B is not scheduled to occur, then nothing hap-
pens. If there are multiple occurrences, only the first is 
removed. The priority of the events is used to break ties 
when multiple events of the same type are scheduled to 
occur at the same time. 

Example: Server With Failures 
Description. 

A machine is subject to periodic failures, which occur 
after a certain amount of time regardless of how long it 
has actually been in service. Upon failure, the part being 
processed (if any) is returned to the queue until the ma-
chine is repaired. 

Parameters 
{tA}=the sequence of interarrival times of parts; 

{tS}=the sequence of service times; {tF}=machine times-
to-failure; {tR}=repair times. 

State Variables 
Q=# of parts in queue; S=1/0 if machine is avail-

able/busy; F=0/1 if machine is working/failed. 

Event Graph. 

Arrival

{Q++}

Start
Service

End
Repair Failure

End
Service

tA
t
S(S > 0)

{Q--, S--} {S++}
(Q > 0)

{F--} {F++, 
Q += 1 - S, 

S = 0}

t
F

tR

(Q > 0)

 
Notes 

The initialization of the Event Graph above has been 
omitted for clarity. Initially, there should be an Arrival 
event and a Failure event on the event list. Note how the 
condition for an Arrival event triggering a StartService 
event now is that the machine be both available and 
working. The priority order for simultaneous events is 

Arrival

{Q ++}

Run Start
Service

End
Service

{Q  = 0, S  = k}

tAtA

tS
(S  > 0)

{Q --, S --}
{S ++}

(Q > 0)

Arrival

{Q ++}

Start
Service

End
Service

t
S

(S  > 0)

{Q --, S --}{S ++}

(Q  > 0)

(U < p)

222

11
1

2

2

22

2

2

2

1

1

1

1

11111 



 

 5 April 2001 
 

SIMULATION NEWS EUROPE 
 

T
E

C
H

N
IC

A
L N

O
T

E
S

Issue 31 

Failure < StartService < Arrival. That is, a Failure event 
will be performed before all other StartService and Arri-
val events that are scheduled at exactly the same time. 
Similarly, every StartService event will be performed be-
fore every other simultaneously scheduled Arrival event. 
Note that these priorities apply only when the events are 
scheduled to occur at exactly the same time. The other 
events do not need to be ordered.  

Parameters on Edges 
The second important extension is the ability to pass 

parameters on edges to event nodes. This is repre-
sented in Figure 5 for both scheduling and for cancelling 
edges.  

A B(k)

(i)

B(k)

 

Figure 5. Scheduling and Cancelling Edges with 
Parameters 

 
The interpretation of the constructs in Figure 5 as 

follows. For the scheduling edge with parameter: When 
Event A occurs then, if condition (i) is true, event B is 
scheduled to occur after a delay of t time units; when B 
occurs, its parameter k will be set to the value given by 
the expression j. For the cancelling edge with parame-
ter: When event A occurs then, if condition (i) is true, the 
first scheduled event of type B whose parameter k ex-
actly matches j is removed; if no such event is found, 
then nothing happens. When event B occurs, the value 
of expression j is that which it had when the scheduling 
event A occurred. 

The relationship between the parameter on the 
event node and the matching parameter on the schedul-
ing edge is the same as that between the code in a pro-
gram that invokes a procedure with an argument and 
the argument of the procedure that matches the call. 
Thus, in Figure 5, j is an expression that resolves to a 
value only when event A occurs, whereas k is a formal 
parameter. The parameter can be considered a “time 
capsule,” that is, a means of passing information about 
the current state of the model to a future event. 

Example: Transfer Line 
The capability of passing parameters on edges en-

ables a generic model of multiple server queues in se-
ries to be created. To model a series of three or more 
workstations in a line by extending the tandem queue 
above would require modification of the Event Graph 
itself.. Instead, using parameters on edges, one event 
graph model can be developed that can model any 
number of workstations in a series based only on input 
data. 

Description 
Arriving customers are processed by n workstations 

in a series, each consisting of a multiple-server queue. 
Upon completion of service at each workstation, a cus-
tomer proceeds to the next workstations and departs the 
system when service at the last workstation is complete. 

Parameters.  
n = number of workcenters (numbered 0,...,n-1). {tA} 

= interarrival times of customers to the system; {tSi} = 
service times at workstation i; ki = total number of serv-
ers at workstation i. 

State Variables 
Qi = # of customers in queue for workstation i; Si = # 

of available servers at workstation i. 

Event Graph: 

Arrival
(i)

{Q ++}

Start
Service

(i)

End
Service

(i)

tS

Arrival

tA (S  > 0)

{Q --, S --} {S ++}

(Q  > 0)

(i < n -1)

0 i

i

i
i

i

iii

i
i

 
Comments 

In this model, parts come into the system with the 
ArrivalToSystem event, which is distinct from the Arrival 
event which signifies the arrival of a part to a workcen-
ter. The parameter on each scheduling edge is the 
workcenter for which the scheduled event is to occur.  

Implementations 
To the author’s knowledge there are only two soft-

ware packages that directly support building Event 
Graph models, SigmaTM and Simkit. 



 

April 2001 6 
 

T
E

C
H

N
IC

A
L 

N
O

T
E

S
 

SIMULATION NEWS EUROPE 
 

Is
su

e 
31

Sigma 
SigmaTM is a windows program that allows the mod-

eler to draw the Event Graph in a palette, then add state 
variables and parameters to events and edges in dialog 
boxes. The model can be executed graphically, and the 
standard set of statistics and plots generated. A very 
useful feature is the ability to generate the C code for 
the model so it can be run as an independent program.  

Simkit 
Simkit is a set of JavaTM packages that support 

building discrete-event models from an Event Graph 
perspective. It does not currently have any built-in 
graphic capabilities, such as the Event Graph palette in 
Sigma. However, it is Open Source and freely available 
under the GNU Public License. 

Simkit extends the basic Event Graph paradigm by 
adding a component architecture based on loose cou-
pling of simulation components. More information on this 
approach can be found in Buss (2000). Simkit can be 
downloaded from the internet at the following URL: 

 hhtt ttpp:: // //ddiiaannaa..oorr..nnppss..nnaavvyy..mmii ll //ss iimmkkiitt // 

Conclusions 
Event Graphs are a simple, yet powerful way to cre-

ate Discrete Event Simulation models. Their simplicity 
makes them an excellent platform for teaching discrete 
event simulation, and their power makes them a good 
platform for building many different types of  simulation 
model. The examples shown should give an indication 
of their usefulness in creating discrete event simulation 
models. Some simple extensions extend the flexibility 
and expressiveness of event Graph models. There are 
two software packages to assist the creation of simula-
tion programs based on Event Graph models. 

References 
[1] Buss, A. 1996. Modeling with Event Graphs, 
Proceedings of the 1996 Winter Simulation Conference, 
J. M. Games, D. J. Morrice, D. T. Brunner, and J. J. 
Swain, eds. 
[2] Buss, A. 2000. Component-Based Simulation 
Modeling, Proceedings of the 2000 Winter Simulation 
Conference, J. A. Joines, R. R. Barton, K. Kang, and P. 
A. Fishwick, eds. 
[3] Law, A. and D. Kelton. 2000. Simulation Modeling 
and Analysis, Third Edition, McGraw-Hill, Boston. MA. 
[4] Schruben, L. 1983. Simulation Modeling with Event 
Graphs, Communications of the ACM, 26, 957-963. 

[5] Schruben, L. 1995. Graphical Simulation Modeling 
and Analysis Using Sigma for Windows, Boyd and 
Fraser Publishing Company, Danvers, MA. 
[6] Schruben, L and E. Yücesan. 1993. Modeling 
Paradigms for Discrete Event Simulation, Operations 
Research Letters, 13, 265–275. 
[7] Schruben, L. and E. Yücesan. 1994. Transforming 
Petri Nets Into Event Graph Models. Proceedings of the 
1994 Winter Simulation Conference, J. D. Tew, S. 
Manivannan, D. A. Sadowski, and A. F. Seila, eds. 
 

  



 

 

 


